

Photon + jet measurements at D0

Dmitry Bandurin

Kansas State University

on behalf of D0 Collaboration

CIPANP 2009

26-May-2009

Outline

- D0 at Tevatron and photon+jet physics
- Inclusive photon Production Cross Section
- Photon plus Jets Production Cross Section
- Photon plus Heavy Flavor Production Cross Section
- Double Parton Scattering
- Summary

Motivations

- ► Photons have a good energy resolution and almost free from the fragmentation related systematics.
- Direct photons come unaltered from the hard scattering
- ⇒ Allows a direct probe of hard scattering dynamics
- Precision tests of QCD
- Probes of gluon and b, c -quark PDFs and b/c fragmentations
- Tests of spatial distribution of partons in the proton and understanding of multi-jet production mechanism.
- Photon+jets are important background to many physics processes (e.g. $H \to \gamma \gamma$; $G \to ee, \gamma \gamma$; technicolor ω_T , $a_T \to \gamma \pi$ with $\pi \to bb$, bc)
- Understanding double(triple) parton scattering mechanism is pre-required in detecting many rare processes, searches for new physics.

Fermilab Tevatron Run II

- $\sqrt{s} = 1.96 \text{ TeV}$
- Peak Luminosity: 3.5x10³² cm⁻²s⁻¹
- About 6.7 fb⁻¹ delivered
- Experiments typically collect data with 80-90% efficiency

D0 detector

Three main systems

- Tracker (silicon and scintillating fiber)
- Calorimeter (LAr/U, some scintillator)
- Muon chambers and scintillators

D0 calorimeter

- ✓ The most important detector for photon and jet measurements
- ✓ Three main subregions: Central $(|\eta|<1.1)$, Intercryostat $(1.1<|\eta|<1.5)$ and End calorimeters $(1.5<|\eta|<4.2)$
- ✓ Liquid Argon/Uranium calorimeter:
 - Stable response, good resolution
 - Partially compensating (e/h ~1)

Photon Identification

- EM shower in calorimeter $\rightarrow y$ candidate
- No associated track
- Isolation criteria

Define
$$R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

 $Isol = \frac{E_{\text{tot}}(R=0.4) - E_{\text{EM}}(R=0.2)}{E_{\text{EM}}(R=0.2)} < 0.07$

- ◆ EM fraction > 96%
- $dR(\gamma,jet) > 0.7$ (cone jet,R=0.7)

Background estimation

Origin: EM jets composed of π^0 , η , K_s^0 , ω mesons surrounded by (soft) hadrons *Tool*: Photon ANN based on calorimeter and track information

Inclusive isolated photon production

D0 Collab., Phys. Lett. B 639, 151 (2006)

 $L = 380 \text{ pb}^{-1}$

Main selection criteria:

- $p_T^y > 23$ GeV and $|\eta| < 0.9$
- Isol < 0.10, EM frac > 0.95, O_{NN} > 0.5
- Missing Et < 0.7 p_T^{γ} (cosmics, W \rightarrow e ν)

- ◆Neural Net (NN) is trained to discriminate photons from EM jets
- ◆EM shower shape + track pT sum is input to NN
- ◆Tested on Z → ee in data/MC
- Photon purity obtained from fit of NN output for MC signal and EM jets to data

Inclusive isolated photon production

- ▶ Plotted: p_T^{γ} weighted bin centers
- ► Large range: 23 –300 GeV
- QCD test at >5 orders of magnitude of cross section variation
- Compared to JetPhoX (NLO QCD)
- ► BFG photon fragmentation functions

Data-to-theory comparison

- ► Results are consistent with theory
- Variation/Shape similar to former observations (UA2, CDF)
- ⇒ suggests more detailed check

$$\frac{d^3\sigma}{dp_T^{\gamma}\,d\eta^{\gamma}\,d\eta^{jet}}$$

D0 Collab., Phys. Lett. B 666, 2435 (2008)

 $L = 1 \text{ fb}^{-1}$

- ▶ Tag photon and jet, \Rightarrow full control of the 2-body kinematics in the final state
- ► Measurement done in the four photon-jet rapidity regions
- ► Photons: $30 < p_T^{\gamma} < 400$ GeV with $|\eta| < 1.0$
- ► Jets (cone with R=0.7): pT > 15 GeV and $|\eta|$ <0.8 or 1.5< $|\eta|$ <2.5
- ▶ Dominant production at p_T^{γ} < 120 GeV is through Compton scattering: $qg \rightarrow \gamma q$
- ▶ Various rapidity regions \Rightarrow various parton x and qg fractions.

- ► Cross section is directly proportional to PDFs in a given (x,Q^2)
- ► Probe PDFs in the range

$$0.007 \le x \le 0.7$$
 and $900 \le Q^2 \le (0.4 - 1.0)x10^5 \text{ GeV}^2$

Triple differential cross section

- Cross section results are shown with stat.+syst. uncertainties
- Analytical unfolding is applied to remove detector resolution effects
- ► Theory: JetPhoX (NLO QCD) with CTEQ6.5M and $\mu = \mu_f = \mu_F = \rho_T^y$ f(y*)

$$f(y^*) = \sqrt{\frac{1}{2}(1 + \exp(-2y^*))}, \quad y^* = \frac{1}{2}(y^{\gamma} - y^{\text{jet}})$$

Photon ANN is used to determine photon purity in all the four rapidity regions

- ✓ Theory does not describe shape of data in the whole measured region.
- ✓ Deviation for central jets at $p_T^y > 100 \text{ GeV}$
- ✓ Deviation for forward jets $(y^{\gamma}y^{jet}>0)$ at $p_{\tau}^{\gamma}<50$ GeV.
- ✓ Structure similar to observed at UA2, CDF and D0 inclusive photons.

Cross section ratios between different regions

- ✓ Cross section ratio vs p_T^y :

 reduced systematics

 (both data & theory)
- ✓ Shapes of measured cross section ratios in data qualitatively reproduced by theory in general
- ✓ But quantitative disagreement for some kinematic regions, in particular central jets over same rapidity side forward jets

Photon+ heavy flavor jet production

D0 Collab., Phys.Rev.Lett. 102, 192002 (2009)

- ► QCD Compton-like scattering dominates for b(c) production up to 90(120) GeV
- ► Outgoing = incoming quark
- ⇒ Constraints on HF PDF

$p\bar{p} \rightarrow \gamma + b, c$ jet: Event selection

- $ullet p_T^\gamma > 30$ GeV (up to 150 GeV), $|y^\gamma| < 1.0$
- Isol< 0.07, frac(EM) > 0.96, $\mathcal{O}_{NN}(\gamma)$ > 0.7
- $\not\!\!E_T < 0.7 p_T^{\gamma}$ (cosmics, $W \rightarrow e \nu$)
- $p_T^{\text{jet}} > 15 \text{ GeV}$, $|y^{\text{jet}}| < 0.8$, $(R_{\text{jets}} = 0.5)$
- Leading jet: $N_{\mathsf{Track}} \geq 2$, $\mathcal{O}_{\mathsf{NN}}(\mathsf{HF}) > 0.85$
- 2 regions: $y^{\gamma} \cdot y^{\text{jet}} > 0$, $y^{\gamma} \cdot y^{\text{jet}} < 0$
- Fitting P_{HF-jet} = − In ∏_i Probⁱ_{track} templates of b, c (MC) and light jets (data) to shape of data

Photon+ heavy flavor jet production

Triple differential cross section

- Plotted: p_T^{γ} -weighted bin centres
- P_{HF-jet} fit in each bin
- For $\gamma + b + X$ and $\gamma + c + X$
- In two regions $y^{\gamma} \cdot y^{\text{jet}} > 0$ and $y^{\gamma} \cdot y^{\text{jet}} < 0$

Data/theory comparison

- γ +b cross section agrees in the whole range
- γ +c cross section disagrees at p_T^{γ} > 70 GeV

Double Parton Scattering in γ +3 jet events

- ◆Complementary information about proton structure: Spatial distribution of partons
 ⇒ Possible parton-parton correlations. Impact on PDFs?
- Needed for understanding many signal events and correct estimating backgrounds to many rare processes.
- ◆Especially important at high luminosities due to additional pp(bar) interactions.

Discriminating variables

$$S_{\phi} = \frac{1}{\sqrt{2}} \sqrt{\left(\frac{\Delta\phi(\gamma,i)}{\delta\phi(\gamma,i)}\right)^2 + \left(\frac{\Delta\phi(j,k)}{\delta\phi(j,k)}\right)^2}$$

$$S_{p_T} = \frac{1}{\sqrt{2}} \sqrt{\left(\frac{|\vec{P_T}(\gamma,i)|}{\delta P_T(\gamma,i)}\right)^2 + \left(\frac{|\vec{P_T}(j,k)|}{\delta P_T(j,k)}\right)^2}$$

$$\Delta S = \Delta \phi(p_T^{\gamma, \text{ jet}}, p_T^{\text{jet}_i, \text{ jet}_k})$$

Computed for pair with minimum S

>95% of signal DP events are minimized by pairs (γ , jet1) and (jet1, jet3)

- Measurement is done in three bins of 2nd jet pT: 15-20, 20-25 and 25-30 GeV
- Data-driven technique: since dijet pT spectrum is steeper than that for radiation jets the DP fractions should drop for larger jet pT.

D0 data and DP model

DP fractions and effective cross section

- ► The measured DP fractions drop from 0.47 ± 0.04 at $15 < 2^{nd}$ jet pT < 20 GeV to 0.23 ± 0.03 at $25 < 2^{nd}$ jet pT < 30 GeV.
- ► Effective cross section is varied for the same bins as 16.2 ± 2.8 mb to 11.5 ± 4.7 mb and agree for all jet pT bins within uncertainties. Systematic uncertainties have negligible bin-to-bin correlations. Averaging over pT bins gives

$$\sigma_{eff}^{aver}$$
 = 15.1 \pm 1.9 mb

► Good agreement with two previous Run I measurements by CDF ("4 jets", $\sigma_{eff} = 12.1^{+1.7}_{-2.3}$ mb and " γ +3jets", $\sigma_{eff} = 14.5 \pm 1.7^{+1.7}_{-2.3}$ mb)

Summary

- Tevatron and D0 are performing well
- Inclusive photon production cross section $d^2\sigma/dp_T^{\gamma}d\eta^{\gamma}$ Published
 - In agreement with theory
 - Data/Theory shape is similar to UA2 and CDF (Run I); still needs to be understood
- Photon+jet production cross section $d^3\sigma/dp_T^{\gamma}d\eta^{\gamma}d\eta^{jet}$ **Published**
 - Four γ -jet rapidity regions
 - Ratios of cross section between regions
 - Some deviations from theory predictions observed
- Photon+HF jet production cross section

Published

- γ +b cross section is in agreement with theory
- γ +c cross section does not agree with theory at p_{τ}^{γ} > 70 GeV

• Double parton interactions in $\gamma+3$ jet events - Measured DP fractions in three bins of $p_T^{2\text{nd } jet}$

- Measured effective cross section in the same bins
- Good agreement with CDF (Run I) measurements.

Preliminary